Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Chinês | MEDLINE | ID: mdl-38538247

RESUMO

The environmental pollution and health hazards caused by the extensive use of organophosphorus flame retardants (OPFRs) have become a problem of wide concern around the world. As a typical OPFR, 2-ethylhexyl diphenyl phosphate (EHDPP) can be detected in water, atmosphere, soil and other environmental media. It widely exists in production and life and can accumulate in organisms, causing great risks the ecosystem and human health. This paper reviews the research of EHDPP domestically and abroad, and summarizes the physicochemical properties of EHDPP and the population situation of occupational exposure, environmental exposure, and population exposure in recent years. Besides, it summarizes the toxic effects and mechanisms of EHDPP, including acute toxicity, hepatotoxicity, neurotoxicity, reproductive and developmental toxicity, and carcinogenesis effects. This paper also proposes the future direction of toxicity and health risks of EHDPP, which provides a theoretical basis for further research on environmental hazards and safety evaluation of EHDPP.


Assuntos
Compostos de Bifenilo , Retardadores de Chama , Exposição Ocupacional , Humanos , Fosfatos , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Ecossistema , Exposição Ocupacional/efeitos adversos
2.
Sci Total Environ ; 921: 170864, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401740

RESUMO

As new organic flame retardants, chlorinated organophosphate esters (Cl-OPEs) have high water solubility and structural similarity to organophosphate pesticides, posing risks to aquatic organisms. The potential neurotoxicity of Cl-OPEs has attracted attention, especially in marine invertebrates with a relatively simple nervous system. In this study, a marine rotifer with a cerebral ganglion, Brachionus plicatilis, was exposed to tris (1,3-dichloro-2-propyl) phosphate (TDCPP) (two environmental concentrations and one extreme level), and the changes in feeding and swimming behaviors and internal mechanism were explored. Exposure to 1.05 nM TDCPP did not change the filtration and ingestion rates of rotifers and average linear velocity. But 0.42 and 4.20 µM TDCPP inhibited these three parameters and reduced unsaturated fatty acid content, reproduction and population growth. All TDCPP test concentrations suppressed AChE activity, causing excessive accumulation of acetylcholine within rotifers, thereby disturbing the neural innervation of corona cilia. Molecular docking and molecular dynamics revealed that this inhibition was because TDCPP can bind to the catalytic active site of rotifer AChE through van der Waals forces and electrostatic interactions. TRP420 was the leading amino residue in the binding, and GLY207 contributed to a hydrogen bond. Nontargeted metabolomics using LC-MS and GC-MS identified differentially expressed metabolites in TDCPP treatments, mainly from lipid and lipid-like molecules, especially sphingolipids. TDCPP decreased ganglioside content but stimulated ceramide generation and the expression levels of 3 genes related to ceramide de novo synthesis. The mitochondrial membrane potential (MMP) and ATP content decreased, and the electron respiratory chain complex and TCA cycle were deactivated. An inhibitor of ceramide synthase, fumonisin, alleviated MMP and ATP, implying a critical role of ceramide in mitochondrial dysfunction. Thus, TDCPP exposure caused an energy supply deficit affecting ciliary movement and ultimately inhibiting rotifer behaviors. Overall, this study promotes the understanding of the neurotoxicity of Cl-OPEs in marine invertebrates.


Assuntos
Retardadores de Chama , Zooplâncton , Animais , Simulação de Dinâmica Molecular , Natação , Simulação de Acoplamento Molecular , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Ceramidas , Lipídeos , Trifosfato de Adenosina , Retardadores de Chama/toxicidade
3.
Ecotoxicol Environ Saf ; 273: 116158, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417316

RESUMO

Organophosphorus flame retardants (OPFRs) have been frequently detected with relatively high concentrations in various environmental media and are considered emerging environmental pollutants. However, their biological effect and underlying mechanism is still unclear, and whether chlorinated OPFRs (Cl-OPFRs) cause adverse outcomes with the same molecular initial events or share the same key events (KEs) remains unknown. In this study, in vitro bioassays were conducted to analyze the cytotoxicity, mitochondrial impairment, DNA damage and molecular mechanisms of two Cl-OPFRs. The results showed that these two Cl-OPFRs, which have similar structures, induced severe cellular and molecular damages via different underlying mechanisms. Both tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) (TCPP) induced oxidative stress-mediated mitochondrial impairment and DNA damage, as shown by the overproduction of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Furthermore, the DNA damage caused by TCPP resulted in p53/p21-mediated cell cycle arrest, as evidenced by flow cytometry and real-time PCR. At the cellular and molecular levels, TCPP increased the sub-G1 apoptotic peak and upregulated the p53/Bax apoptosis pathway, possibly resulted in apoptosis associated with its stronger cytotoxicity. Although structurally similar to TCPP, TCEP did not induce mitochondrial impairment and DNA damage by the same KEs. These results provide insight into the toxicity of Cl-OPFRs with similar structures but different mechanisms, which is of great significance for constructing adverse outcome pathways or determining intermediate KEs.


Assuntos
Retardadores de Chama , Compostos Organofosforados , Fosfinas , Compostos Organofosforados/toxicidade , Retardadores de Chama/toxicidade , Proteína Supressora de Tumor p53/genética , Organofosfatos/toxicidade , Dano ao DNA
4.
Environ Sci Pollut Res Int ; 31(11): 16770-16781, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321284

RESUMO

Tris (2-chloroethyl) phosphate (TCEP) is a crucial organophosphorus flame retardant widely used in many industrial and commercial products. Available reports reported that TCEP could cause various toxicological effects on organisms, including humans. Unfortunately, toxicity data for TCEP (particularly on neurotoxicity) on aquatic organisms are lacking. In the present study, Danio rerio were exposed to different concentrations of TCEP for 42 days (chronic exposure), and oxidative stress, neurotoxicity, sodium, potassium-adenosine triphosphatase (Na+, K+-ATPase) activity, and histopathological changes were evaluated in the brain. The results showed that TCEP (100 and 1500 µg L-1) induced oxidative stress and significantly decreased the activities of antioxidant enzymes (SOD, CAT and GR) in the brain tissue of zebrafish. In contrast, the lipid peroxidation (LPO) level was increased compared to the control group. Exposure to TCEP inhibited the acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain tissue. Brain histopathology after 42 days of exposure to TCEP showed cytoplasmic vacuolation, inflammatory cell infiltration, degenerated neurons, degenerated purkinje cells and binucleate. Furthermore, TCEP exposure leads to significant changes in dopamine and 5-HT levels in the brain of zebrafish. The data in the present study suggest that high concentrations of TCEP might affect the fish by altering oxidative balance and inducing marked pathological changes in the brain of zebrafish. These findings indicate that chronic exposure to TCEP may cause a neurotoxic effect in zebrafish.


Assuntos
Retardadores de Chama , Fosfinas , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/metabolismo , Compostos Organofosforados/toxicidade , Retardadores de Chama/toxicidade , Acetilcolinesterase/metabolismo , Organofosfatos/toxicidade , Encéfalo/metabolismo , Fosfatos , Adenosina Trifosfatases
5.
Ecotoxicol Environ Saf ; 271: 115960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219622

RESUMO

Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.


Assuntos
Ferroptose , Retardadores de Chama , Organofosfatos , Feminino , Animais , Fator 2 Relacionado a NF-E2/genética , Peixe-Zebra , Acetilcolinesterase , Retardadores de Chama/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Espécies Reativas de Oxigênio , Compostos Organofosforados/toxicidade , Estresse Oxidativo , Xantofilas
6.
Sci Total Environ ; 913: 169805, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181956

RESUMO

The ecological risks posed by widespread organophosphorus pesticide (OPs) pollution in the surface waters of China remain unclear. In this study, species sensitivity distribution (SSD) parametric statistical approaches were coupled with fully acute and chronic toxicity data to fit the sensitivity distributions of different aquatic species to five typical OPs: dimethoate, malathion, parathion-methyl, trichlorfon, and dichlorvos. Crustaceans exhibit the highest sensitivity to OPs, whereas algae are the least sensitive. The acute hazardous concentrations that affected 5 % of the species (HC5) were 0.112, 0.001, 0.001, 0.001, and 0.001 mg/L for dimethoate, malathion, parathion-methyl, trichlorfon, and dichlorvos, respectively, whereas their chronic HC5 values were 0.004, 0.004, 0.053, 0.001, and 0.0005 mg/L, respectively. Hence, dichlorvos is highly toxic and poses greater risk to non-target aquatic species. The evaluation data revealed varying geographical distribution characteristics of the ecological risks from OPs in 15 freshwater aquatic systems across different regions of China. Dichlorvos posed the highest risk in the basins of Zhejiang and Guangdong Provinces, with the highest chronic Risk Quotient (RQ) and Hazard Index (HI) at 9.34 and 9.92, respectively. This is much higher than what was collected and evaluated for foreign rivers (the highest chronic RQ and HI in foreign rivers were 1.65 and 2.24, respectively). Thus, dichlorvos in the surface waters of China poses a substantial ecological risk to aquatic organisms, and may endanger human health.


Assuntos
Metil Paration , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Compostos Organofosforados/toxicidade , Diclorvós , Malation , Dimetoato , Água , Triclorfon , Organismos Aquáticos , China , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
7.
Environ Res ; 242: 117756, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016496

RESUMO

BACKGROUND: Early life exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment from infancy to adolescence. In our Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort, we previously reported that residential proximity to OP use during pregnancy was associated with altered cortical activation using functional near infrared spectroscopy (fNIRS) in a small subset (n = 95) of participants at age 16 years. METHODS: We administered fNIRS to 291 CHAMACOS young adults at the 18-year visit. Using covariate-adjusted regression models, we estimated associations of prenatal and childhood urinary dialkylphosphates (DAPs), non-specific OP metabolites, with cortical activation in the frontal, temporal, and parietal regions of the brain during tasks of executive function and semantic language. RESULTS: There were some suggestive associations for prenatal DAPs with altered activation patterns in both the inferior frontal and inferior parietal lobes of the left hemisphere during a task of cognitive flexibility (ß per ten-fold increase in DAPs = 3.37; 95% CI: -0.02, 6.77 and ß = 3.43; 95% CI: 0.64, 6.22, respectively) and the inferior and superior frontal pole/dorsolateral prefrontal cortex of the right hemisphere during the letter retrieval working memory task (ß = -3.10; 95% CI: -6.43, 0.22 and ß = -3.67; 95% CI: -7.94, 0.59, respectively). We did not observe alterations in cortical activation with prenatal DAPs during a semantic language task or with childhood DAPs during any task. DISCUSSION: We observed associations of prenatal OP concentrations with mild alterations in cortical activation during tasks of executive function. Associations with childhood exposure were null. This is reasonably consistent with studies of prenatal OPs and neuropsychological measures of attention and executive function found in CHAMACOS and other birth cohorts.


Assuntos
Inseticidas , Praguicidas , Efeitos Tardios da Exposição Pré-Natal , Adolescente , Criança , Feminino , Humanos , Gravidez , Encéfalo/diagnóstico por imagem , Neuroimagem Funcional , Exposição Materna/efeitos adversos , Organofosfatos/toxicidade , Organofosfatos/urina , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Praguicidas/urina , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
8.
Ecotoxicol Environ Saf ; 268: 115696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979363

RESUMO

Organophosphorus flame retardants (OPFRs) have been shown to be carcinogenic, neurotoxic, and endocrine disruptive, so it is important to understand the levels of OPFRs in human body as well as the modes of external exposure. In this study, we investigated the levels of 13 OPFRs and 7 phosphodiester metabolites in paired human blood and urine, as well as the influencing factors (region, age and gender), and studied the relationship between OPFRs and oxidative stress by urinary metabolites. We found that the concentrations of triphenyl phosphate (TPhP) and tris-(2-ethylhexyl) phosphate (TEHP) in the blood of urban populations were higher than those of rural populations, and that younger populations suffered higher TPhP and 2-ethylhexyl diphenyl phosphate (EHDPP) exposures than older populations. In addition, we found that tris-(2-chloroethyl) phosphate (TCEP), tributyl phosphate (TnBP), TPhP and EHDPP exposure induced oxidative stress. The results of the internal load principal component analysis indicated that dust ingestion, skin exposure, respiration and dietary intake may be the most important sources of TCEP, tris(2-butoxyethyl) phosphate (TBOEP), tri(2-chloroisopropyl) phosphate (TCIPP) and TEHP, respectively, and dust ingestion and skin exposure may be the main sources of TPhP for humans.


Assuntos
Retardadores de Chama , Humanos , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Compostos Organofosforados/toxicidade , Compostos Organofosforados/análise , Organofosfatos/toxicidade , Organofosfatos/análise , Poeira/análise , Fosfatos
9.
Arch Toxicol ; 97(12): 3037-3060, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787774

RESUMO

The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Síndromes Neurotóxicas , Doença de Parkinson , Praguicidas , Humanos , Praguicidas/toxicidade , Compostos Organofosforados/toxicidade , Síndromes Neurotóxicas/etiologia , Polimorfismo de Nucleotídeo Único , Arildialquilfosfatase/genética
10.
Sci Total Environ ; 905: 167057, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709080

RESUMO

Many anthropogenic chemicals are manufactured and eventually enter the surrounding environment, threatening food security and human health. Considering the additive or synergistic effects of pollutant mixtures, there is an expanding need for rapid, cost-effective and field-portable screening methods in environmental monitoring. This study used a recently developed biospectroscopy-bioreporter-coupling (BBC) approach to investigate the binary toxicity of Ag(I), Cr(VI) and four organophosphorus pesticides (dichlorvos, parathion, omethoate and monocrotophos). Ag(I) and Cr(VI) altered the toxicity mechanisms of pesticides, explained by the synergistic or antagonistic effect of Ag/Cr-induced cytotoxicity and pesticide-induced genotoxicity. The discriminating Raman spectral peaks associated with organophosphorus pesticides were 1585 and 1682 cm-1, but 750, 1004, 1306 and 1131 cm-1 were found in heavy metal and pesticide mixtures. More spectral alterations were related to pesticides rather than Ag(I) or Cr(VI), hinting at the dominant toxicity mechanisms of pesticides in mixtures. Ag(I) supplement significantly increased the levels of reactive oxygen species induced by organophosphorus pesticides, attributing to the increased permeability of cell membrane and entrance of toxic substances into the cells by the oligodynamic actions. This study lends deeper insights into the interactions between microbes and pollutant mixtures, offering clues to assess the cocktail effects of multiple pollutants comprehensively.


Assuntos
Poluentes Ambientais , Metais Pesados , Praguicidas , Humanos , Praguicidas/toxicidade , Compostos Organofosforados/toxicidade , Metais Pesados/toxicidade , Poluentes Ambientais/toxicidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-37491117

RESUMO

Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs dimethyldithiophosphate (DMDTP) and dimethylphosphate (DMTP) and the ethylated DAPs diethyldithiophosphate (DEDTP) and diethylphosphate (DETP), in comparison with their parental compounds, malathion and terbufos, respectively, in bone marrow polychromatic erythrocytes (PCE) of male and female Balb/c mice. We also compared DNA damage (comet assay) induced by DMDTP and dimethyl phosphate (DMP) in human cell lines. Both DMDTP and DMP caused DNA damage in peripheral blood mononuclear cells, HeLa cells, and the hepatic cell lines HepG2 and WRL-68. In the in vivo micronucleus assay, methylated and ethylated DAPs increased micronucleated PCE cells in both male and female mice. Female mice were more susceptible to DNA damage. In comparison to their parental compounds, methylated DAPs, particularly DMTP, were more genotoxic than malathion; DEDTP, DETP, and terbufos were similar in potency. These results suggest that DAPs may contribute to DNA damage associated with OP pesticide exposure.


Assuntos
Inseticidas , Praguicidas , Masculino , Feminino , Humanos , Animais , Camundongos , Malation/toxicidade , Camundongos Endogâmicos BALB C , Leucócitos Mononucleares/química , Células HeLa , Compostos Organofosforados/toxicidade , Organofosfatos/toxicidade , Dano ao DNA , Células da Medula Óssea/metabolismo , Praguicidas/toxicidade , Exposição Ambiental
12.
Artigo em Inglês | MEDLINE | ID: mdl-37268167

RESUMO

Organophosphorus pesticides (OPPs) are widely used in agricultural production due to their chemical stability, high efficiency and low cost. It should be emphasized that OPPs can seriously harm aquatic organisms after entering the water environment through leaching and other ways. To this end, this review combines a new method to quantitatively visualize and summarize information on developments in this field to review the latest progress in OPPs toxicity, propose scientific trends and research hotspots. Among all countries, China and the United States have published a large number of articles and played a leading role. Based on the detection of co-occurrence keywords, it is emphasized that "OPPs cause oxidative stress in organisms", which reflects that the main factor of OPPs toxicity is the occurrence of oxidative stress. Researchers also focused on studies involving AchE activity, acute toxicity and mixed toxicity. This reveals that OPPs mainly affect the nervous system, and higher organisms are more resistant to the toxic effects of OPPs than lower organisms due to their strong metabolic capacity. As for the mixed toxicity of OPPs, most OPPs have synergistic toxic effects. Moreover, the analysis of keyword bursts revealed that the study of OPPs on the immune response of aquatic organisms and the effect of temperature on toxicity will become new research trends. In conclusion, this scientometric analysis can provide a scientific basis for improving the aquatic ecological environment and rationally using OPPs.


Assuntos
Praguicidas , Praguicidas/toxicidade , Praguicidas/química , Compostos Organofosforados/toxicidade , Organismos Aquáticos/metabolismo , Agricultura , China
13.
Artigo em Inglês | MEDLINE | ID: mdl-37368980

RESUMO

Tris(chloropropyl) phosphate (TCPP) is used as a flame retardant in textiles, furniture foam, and other related products. In addition, it is manufactured for use in construction materials, electronic products, paints, coatings, and adhesives. Several flame retardants, including structurally similar organohalogen compounds, have been removed from products in commerce due to toxicity concerns, and TCPP has been proposed as a replacement flame retardant for use in these products. An anticipated increase in use of TCPP has generated concerns for increased human exposure through oral, dermal, and inhalation routes; however, publicly available toxicity data are scarce. The U.S. Consumer Product Safety Commission therefore requested that the National Toxicology Program (NTP) form a research program on TCPP to conduct subchronic and chronic exposure studies in rats and mice for hazard identification and characterization information. Because TCPP is commercially available as an isomeric mixture, the NTP studies tested a commercial TCPP product containing four isomers commonly found in other commercial mixtures of TCPP: tris(1-chloro-2-propyl) phosphate (TCIPP; CASRN 13674-84-5), bis(2-chloro-1-methylethyl) 2-chloropropyl phosphate (CASRN 76025-08-6), bis(2-chloropropyl) 2-chloroisopropyl phosphate (CASRN 76649-15-5), and tris(2-chloropropyl) phosphate (CASRN 6145-73-9). Following procurement of TCPP, the percent purity of the four isomers was determined prior to conducting hazard characterization studies. (Abstract Abridged).


Assuntos
Retardadores de Chama , Fosfatos , Camundongos , Ratos , Humanos , Animais , Compostos Organofosforados/toxicidade , Ratos Sprague-Dawley , Retardadores de Chama/toxicidade , Camundongos Endogâmicos , Carcinogênese
15.
Toxicol In Vitro ; 87: 105523, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36427757

RESUMO

Since 2004, some legacy flame retardants (FRs) were restricted or removed from the European markets due to their concern on human health. Both organophosphorus FRs (OPFRs) and novel brominated FRs (NBFRs) have replaced them because they are presumably safer and less persistent emerging FRs (EFRs) and their exposure is currently occurring in indoor environments at high levels. Little is known about the neurotoxic potential risk of these EFRs in humans. The present study was aimed at assessing the acute neurotoxicity potential of Tris(1, 3-dichloro-2-propyl)phosphate (TDCPP), triphenyl phosphate (TPhP), Bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) on human neuroblastoma cells (SH-SY5Y). SH-SY5Y were exposed to these EFRs at low concentrations -ranging 2.5-20 µM. during 2-24 h. We investigated viability, mitochondrial function, oxidative stress, inflammatory response, as well as neural plasticity and development. The results have demonstrated that selected EFRs (TDCPP, TPhP, EH-TBB and BEH-TBP) did not impair neural function on SH-SY5Y as acute response. To the best of our knowledge, this has been the first study focused on evaluating the neural affection of TPhP on SH-SY5Y cells and of EH-TBB and BEH-TBP on neural cells. We also assessed for the first time almost all endpoints after FR exposure on neural cell lines.


Assuntos
Retardadores de Chama , Neuroblastoma , Humanos , Monitoramento Ambiental , Retardadores de Chama/toxicidade , Poeira/análise , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Éteres Difenil Halogenados
16.
Environ Res ; 216(Pt 4): 114704, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334827

RESUMO

Though the partitioning behavior of organophosphorus flame retardants (OPFRs) has been recognized in vitro incubation assay, health risk assessment on those internal exposure with or without partitioning indexes in human blood is still unclear. In this study, nine commonly used OPFRs were quantified in 96 pairs of plasma and blood cell samples from Chinese volunteers. Non-carcinogenic and carcinogenic risk (CR) assessment building upon two distinct scenarios were conducted and compared. The dominant OPFRs in both plasma and blood cells were TBEP, TBP and TPHP. TCEP was the most enriched compound in plasma with Fplasma nearly to 1.0 (0.92), followed by TCPP, TBEP, TPHP, TBP and TEHP (from 0.61 to 0.76). The partitioning behavior of TCP in plasma was equivalent to blood cells with Fplasma at 0.50. When fully considered the Fplasma, the estimated average daily intake (DI) of ∑OPFRs (638.44 ng/kg BW/day) reached nearly 1.48-fold higher than the conventional calculation (dividing the concentration of plasma (Cplasma) by a factor of 2.0). Accordingly, we found the average hazard quotation (index) of TBP, TPHP and ∑OPFRs was underrated 1.50-fold when neglected the partitioning behaviors. Notably, the average CR of TCEP exceeded 10-6 at the highest concentration (1.19 × 10-6 ng/mL in plasma) only when the Fplasma was introduced. These data conjointly demonstrated that most of the DI levels and the corresponding risk index of OPFRs would be underestimated without factoring Fplasma into calculation, especially for those of low plasma partitioning. To our best knowledge, this study initially uncovered the gap between introducing Fplasma and dividing Cplasma by 2.0 during health risk assessment on internal OPFRs exposure.


Assuntos
Retardadores de Chama , Humanos , Retardadores de Chama/toxicidade , Compostos Organofosforados/toxicidade , Medição de Risco , Organofosfatos
17.
Toxicology ; 484: 153407, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36543276

RESUMO

This article reviews available data regarding the possible association of organophosphorus (OP) pesticides with neurological disorders such as dementia, attention deficit hyperactivity disorder, neurodevelopment, autism, cognitive development, Parkinson's disease and chronic organophosphate-induced neuropsychiatric disorder. These effects mainly develop after repeated (chronic) human exposure to low doses of OP. In addition, three well defined neurotoxic effects in humans caused by single doses of OP compounds are discussed. Those effects are the cholinergic syndrome, the intermediate syndrome and organophosphate-induced delayed polyneuropathy. Usually, the poisoning can be avoided by an improved administrative control, limited access to OP pesticides, efficient measures of personal protection and education of OP pesticide applicators and medical staff.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Síndromes Neurotóxicas , Praguicidas , Humanos , Praguicidas/toxicidade , Compostos Organofosforados/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/psicologia , Organofosfatos/toxicidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-36554732

RESUMO

Prenatal organophosphorus pesticides (OPs) are ubiquitous and have been linked to adverse neurodevelopmental outcomes. However, few studies have examined prenatal OPs in relation to diagnosed attention-deficit/hyperactivity disorder (ADHD), with only two studies exploring this relationship in a population primarily exposed through diet. In this study, we used a nested case-control study to evaluate prenatal OP exposure and ADHD diagnosis in the Norwegian Mother, Father, and Child Cohort Study (MoBa). For births that occurred between 2003 and 2008, ADHD diagnoses were obtained from linkage of MoBa participants with the Norwegian Patient Registry (N = 297), and a reference population was randomly selected from the eligible population (N = 552). Maternal urine samples were collected at 17 weeks' gestation and molar sums of diethyl phosphates (ΣDEP) and dimethyl phosphates metabolites (ΣDMP) were calculated. Multivariable adjusted logistic regression models were used to estimate the association between prenatal OP metabolite exposure and child ADHD diagnosis. Additionally, multiplicative effect measure modification (EMM) by child sex was assessed. In most cases, mothers in the second and third tertiles of ΣDMP and ΣDEP exposure had slightly lower odds of having a child with ADHD, although confidence intervals were wide and included the null. EMM by child sex was not observed for either ΣDMP or ΣDEP. In summary, we did not find evidence that OPs at 17 weeks' gestation increased the odds of ADHD in this nested case-control study of ADHD in MoBa, a population primarily experiencing dietary exposure.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Praguicidas , Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Humanos , Criança , Masculino , Mães , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Compostos Organofosforados/toxicidade , Estudos de Coortes , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Estudos de Casos e Controles , Noruega/epidemiologia , Fosfatos , Pai
19.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430782

RESUMO

Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent decrease in HaCaT cell viability after exposure to 1.56-400 µg/mL for 24 h, with an IC50 of 275 µg/mL. TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus. Furthermore, the cell cycle was arrested at the G1 phase at 100 µg/mL by upregulation of the mRNA expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both the senescence-associated-ß-galactosidase activity and related proinflammatory cytokine IL-1ß and IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that flame-retardant exposure may be a key precipitating factor for human skin aging.


Assuntos
Retardadores de Chama , Envelhecimento da Pele , Humanos , Senescência Celular , Retardadores de Chama/toxicidade , Queratinócitos/metabolismo , Compostos Organofosforados/toxicidade , Compostos Organofosforados/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
Ecotoxicol Environ Saf ; 247: 114246, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332405

RESUMO

Several pesticides widely used in agriculture have been considered to be endocrine disrupting chemicals through their binding affinities to estrogen or androgen receptors. This study was conducted to clarify the human androgen receptor (hAR)-mediated genomic endocrine disrupting mechanism of eight selected pesticide products by in vitro assay providing the Organization for Economic Co-operation and Development Test Guideline No. 458, 22Rv1/MMTV_GR-KO AR transcriptional activation assay and a homo-dimerization confirmation assay. None of the tested pesticide products showed an AR agonistic effect, whereas they were all determined to be AR antagonists at non-toxic concentrations. Also, the eight pesticide products were verified as true AR antagonists through a specificity control test. In the Bioluminescence Resonance Energy Transfer-based AR homo-dimerization confirmation assay, the eight pesticide products did not induce AR homo-dimerization. Additionally, western blotting revealed that none of the eight pesticide products induced AR translocation from the cytoplasm to the nucleus. In conclusion, we found for the first-time evidence to understand the AR-mediated endocrine disrupting mechanisms induced by selected azole and organophosphorus pesticide products.


Assuntos
Praguicidas , Receptores Androgênicos , Humanos , Receptores Androgênicos/genética , Dimerização , Compostos Organofosforados/toxicidade , Azóis , Praguicidas/toxicidade , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA